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A method of analysing box-like shells, based on reducing the problem to 
the problem of the combined planar and flexural states of a plate with a 
defect, for which methods of solution are given in /l/, is proposed (the 
defect is understood to be a line for which jumps in the force of 
displacement occur when it is crossed). It is shown that for small 
thicknesses the solution of the problem of the state of stress of a 
box-like shell reduces to the sequential solution of two problems 
(flextural and planar), to within terms of a higher order of smallness. 
The results of calculating the bending moments and stress in the shell 
are represented in the form of graphs and tables. 

Box-like shells are analysed in /2-5/ using the method of homogeneous solutions, that 
is effective for particular loading cases or for determining the naturalvibrations frequencies. 
The method used here /b-7/ enables exact solutions to be obtained for an arbitrary load and 
significantly simplifies the formulation of the problem and the appropriate computations. 

a b 

Fig.1 

Let us examine the state of 
long iiates of width 

stress of a shell consisting of two strip-like infinitely 
OA =a,, OB = b joined at right angles and subjected to an arbitrary 

load (Fig.la). For simplicity, we wiil assume that the plates are of identical thickness and 
are made of the same material. The problem reduces to seeking the solution of the following 
system of differential equations: 

DA% (19 Y) = Z, (2, Y) (1.0 
&J!” a#) a& 

al+ --$+X,(x,y)=O, ~-$+~+Y’(z’Y)=o 

A(o?‘+ol”)=-(l+v)(~+.$); --a<r<O, -ca<y<co 

DA% (Y, 4 = X, (Y, 4 

do@) ar(*) 
-++-+Y,(y,z)=O, *+ 

a@ 

au 
7 + z, (Y, z) = 0 

A(o:“+o:p’)=-(l+v)(%+%): O<s<b, -ca<y<cc (1& 

that satisfies the boundary conditions Up'= 0 on the forces z = --a (j = 1) and z = b(j = 

2) 
Uf’ [WJ s w1 - k~),:’ = 0, Up’ [u2] z u + k’a’V$a’ = 0 z 0 (1.3) 
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(1.4) 

and the joining conditions at z = z = 0, -CO (y( CO ensuring equality of the forces and 
displacements at the shell edge 

We here introduce dimensionless quantities that are denoted by the same letters as their 
corresponding physical quantities but will be marked with an asterisk unlike the latter 

(WI, ~2) = DlE3 (WI*, ~&‘a,~ (~1, UI. %) = 6 (uj*> UI*, wpt) i a, 
(G Y, 4 = (I*, Y,, z*)la*, M,(j) = M$/(E,a,z), V,(j) := V$/(E,a,) 

q,,(j) = &D,t+, (Xl, 22, J’j) = k* (Xl*, z z*, Yj*) IEsc 

(Z,, X,) = (Z,,, X,,) /E,, o,,(j) = E&E,, T$: = ET!;& / E, 

D1 = D,l(E,h,S), b= b&z,, E = h,la,, a = E = D = 1, j=i,2 

(1.6) 

The subscripts 1 and 2 correspond to quantities on the horizontal and vertical plates: 
nil uj, wj are the displacements of points of the plates in the directions of the 2, y, z axes, 

A@', I$', TV' are the bending moment, generalized transverse force, and slope of the plate, 

(I$', T$ are the normal and tangential stresses, Xj, Yj, Zj are loadings acting in the 
directions of the corresponding axes, and h, v, E,D are the thickness, Poisson's ratio, 
Young's modulus, and the cylindrical stiffness of the plates. 

The operators of the boundary conditions (1.3) and (1.4) describe the conditions of 
elastic support of the contour with compliance coefficients kjf’. We note that the case k(,‘) = 

00 (here and henceforth, n = 0, i,2,3) corresponds to symmetric loading of the box relative 
to the j-th face while k’,I’= 0 is skew-symmetric. Therefore, the problem of the state of 

stress of a box-like structure reduces to integrating a system of differential equations with 
total order 16 and satisfying the corresponding number of boundary conditions. 

Significant difficulties are inevitable for the direct solution of the problem because 
of the awkwardness of the computations and the calculation procedures. Certain simplifications 
can be achieved in special cases. For instance, if a = ,,, k,,(r) = k,,@), the problem can be 
separated into a sum of the problems ofthe symmetric and skew-symmetric loading of a corner 
structure (Fig.la), each of which reduces to solving a problem concerning the planar-bending 
state of stress of a strip that is half of the corner struture. It is here necessary to solve 
half the differential equations, system (l.l), say, that should satisfy the boundary conditions 
(1.3) and (1.4) for Z= --(I and the joining conditions (1.5), where the latter will have the 
following form: 

in the symmetric case 

I = 0, wI = -D,&,, Vz’r(‘) = ox, q,(‘) = $j = 0 

in the skew-symmetric case 

I= 0, w1 = Dleaul, V, (I) = -ox(‘), MS(‘) = v1 = 0 

But, as will be shown below, even in these cases the approach proposed in this paper 
will enable the solution to be simplified considerably. 

2. Let us alter the formulation of the problem by introducing the new functions 

(2.1) 
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Replacement of the unknowns (2.1) corresponds to the following operations: imaginary 
rotation of the dihedral angle AOB (Fig.la) and reversal of the sign of the plate deflection 
YOB while conserving the joining conditions. We consequently obtain the problem of a plate 
with a defect along the y axis (Fig.lb). Such a problem reduces to integration of the follow- 
ing system of equations 

DA% (5, Y) = Z (5, Y) (2.2) 
ar d’xv .++x=o, --$y +!$+Y=O 

A(~~+u~)=-(~-~Y)(~+~); --O<z<b, x#'). -=<Y<u 

satisfying the homogeneous boundary conditions 

Uljk’-,[~l=U~~Iu,uI=O,k,j=1,2 

and the conditions on the defect I = 0, -co < y< co 

<u> = <%y) = <cpx> = CM,) = 0 
E*D, <u> = - (w+‘+ 10-1, (w) = ~~0, (u, + u_) 
<ux> = -[(Vx)+ + Wx,)_l, (VA = (%s)+ + (a,)_ 

(F, = F (lo), (0 = F_ - F,) 

(2.3) 

(2.4), 

The advantage of such an approach is that firstly, the number of differential equations 
being solved is halved, secondly, the joining conditions are simplified, thirdly, methods of 
solving both planar and flexural problems for plates with a defect are well developed at the 
present time and are elucidated in the monograph /I/. We also note that such a formulation 
should be more convenient than the traditional one /3/ is applying the method of boundary 
elements. 

After application of the Fourier transform in the variable y 

I 

zxm zzm :I ~I~=j_l~~ ix 5 5/&--dy 

problem (2.2)-(2.4) reduces to a one-dimensional discontinuous boundary-value problem 

L*f,* (5) = q& (I), --a < z < 0 f/O < x < b 

with the homogeneous boundary conditions 

U,j* [la*1 = Uzl* [ja*l = 0, j = 1, 2 

Sz+fa+ = A’,+/,+ = S1-fa- = S1-fa- = 0, S,+f,+ = Hz-f,-, HO+fa+ = 
-ss-fa- 

lS,+f~+l ~~0, = cc4 [Ho-fa-I, [H3+fa+] e2D, = a4 IS,-fa-1 

Here 

LX+ (x) = e*,, fa- (x) = Wa (I), qa+ (z) = -R,X, - iaR,+Y,, 

ga- @) = z, 

and the differential operators 

R,+f=-$, k=O,i, R,ff=[L+(i+v)a*]f 

Rsff=-&-(l,v)d]f, Lf=$-USf 

Sf = (T- - T+) f, Hf = (T- + T+) f, T*f = f (+O) 

S,*j = S [Rk*fl, Hk*f = H [R&f], Tk*f = T [R,*fl 

are introduced. 
The transforms of the fundamental elastic quantities 

(2.5) 

(2.6) 

(2.7) 

(2.8), 

(2.9) 

(2.10) 
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- a4ua = Rs+fa+ + -&-2(1+v)aa]X,+ias 

- idv, = R,+f,+ + 2 + iaY,, w, = Ro-fa-, (~a = R,-fa- 

Mxa = -Ramjaw, V,r, = -Rs-fa-, a,, = R,+f,‘, iar, = Rl+fa+ f X, 

can be expressed by using the differential operators (2.10) and functions of the boundary 
conditions 

U,,* &*I = R,*f,* + (- l)‘+lpl’*RS*fa*l Uz’* [fa*] = R,*f,* + 

(- i)‘+l pLs,*R,*fcz* 

(PI,- = kP, p,,+ = a-?@, pa’- = ki”, plj+ = a%~“) 

can be transformed, where j = 1 corresponds to the face 5=--a and j =2 to the face 
z = b. 

We will seek the solution of the discontinuous boundary-value problem (2.6)-(2.8) accord- 
ing to the scheme elucidated in /7/, in the form 

fa* (z) = fq* (z) + ig (- 1)’ j&T& [Ga* (57 t)] (fi* = Si *jai) (2.11) 

where j,* (i = 0, 1, 2, 3) are unknown jumps of the function jai(z), G&(2, t) are Green's func- 
tions of the boundary-value problem (2.6), (2.7), while j,* is a particular solution given 
by the relation 

Here and everywhere below 
from the first four conditions 
jlf = jr* = 0, while 
equations obtained on 

the operators Tt* are applied in the variable 
(2.7) that four out of the eight unknown jumps 

the remaining four are a solution of the system of four 
substituting (2.11) into the last four conditions (2.8) 

jf = i q,& (t) G,* (5, t) dt 
-a 

Therefore, after 
(2.6)-(2.8) will be 

1 0 -cc,,- c,,- jo' I-I; 
0 e2ae’D I --Cc,,- Co,- fs’ *& 

- Es&,+ E2C,,+ -aa9D, 0 jo- = eaRj, 

-cm+ coo+ 0 -I f3- R+ 
w 

(Cl’* = HiiT,* [Ga*]t H$ = H,*fq*) 

t. It follows 
equal zero: 
linear algebraic 

(2.12) 

having solved system (2.12), the solution of the boundary-value problem 

jcr* = jp* (x) + fo*T,+ K&*1 - fa*To* K&*1 (2.13) 

and this enables the transforms of all the elastic quantities to be obtained, in particular 

a', (4 == fo-T,- [Grz-I - fa-To- [G,-] -I- 4, qa (E)Ga- (5.5) dE 

- ia%.@) = f,+R,+T,+G,+ -f3+R2+T,+G,+ + 

(1’ -!- V) i {X,(E) [(I !- v)a3G,+'(s,E)] -1 

Y, (E)(- iaS)[kG,+(r,~) -L (1 I~ v)a2G,+(s,~)])dE 
- a4ua (J) = f,+R,+T,+G,+ - f3+R,+T,+G,+ - 
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Ya (5) [(-- 4 G,+’ (a 81) dE 
I. 

g, (~7 5) = \ G,+ (~7 t) dt 
--D 

Here the prime and dot denote the derivative with respect to the first and second vari- 
ables, respectively. 

We note that system (2.12) splits into two independent second-order systems in the two 
pairs of jumps fo* and fs* for a = b and k,(j) = cx (n = 0,1, 2, 3;j = 1, 2) in the case of 
symmetric loading of a square box because C& =c$, = 0. By separating the problem into sym- 
metric and skew-symmetric problems with respect to the z coordinate, it can be achieved that 
one of these pairs will equal zero identically. In this case the solution of the planar 
(flexural) problem is expressed in terms of one of the jumps f3+ (f8J or fO’ (f,J for which 
the analytical expression is sufficiently simple. 

For instance, when a shell is compressed by concentrated forces P, applied at the centres 
of the faces y = 0, z = &b, the case of the symmetric problem is 

fs- = P (2p)-’ (2B + sh 2B) (sh B + B ch B), 

f3+ = 2P (Fp)-‘a3 sh2 B (sh B + B ch B) 

p = E2 [3 (1 - vz)]-*az sh4B f (B + sh B ch B)2; 

P = P,/(E,a,2), R A ab 

3. The scheme mentioned was realized to solve the problem of the symmetric loading of 
a box shell of rectangular profile by a load of constant intensity q applied perpendicular to 
the middle surface of the horizontal plates k,(j) = CO (j =I, 2; n = 0, 1, 2,3) for two kinds of 
loading: a load distribution line x = -a, -1< y< 1 parallel to the plate joining line 
(P'roblem l), and a load distribution line y = 0, -a- ZQ I < -a + 1 perpendicular to it 
(Problem 2). Hereq = p,/(E,a,), 1 = l,/a,. In this case Green's functions Ga(zr t) of the 
flexural and planar problems are identical. 

Values of M, and cx in different sections were calculated on a computer for different 
ratios between a, b and 1. The representation 

M, (x, y) = M,’ (I, y) + & ML (3 eiay da 
-co 

was used here. 
Here M," is the explicitly inverted weakly convergent part extracted from the particular 

solution, whose transform has only a power-law decrease in a, as a result of which its 
numerical inversion is difficult, ik% (5) is a function which decreases exponentially with 

respect toa whose integralcanbe efficiently evaluated numerically. Values of the transforms 
of the jumps fk* are determined directly here from the solution of system (2.12) while the 
operators and functionals of Green's functions are conveniently programmed in matrix form. 

0.2 M, 

Z 

I 

5 E -I -KS t u ff. s 

- u. z 

Fig.2 

A graph of the dimensionless quantity M, is shown in Fig.2 for the first kind of load- 
ing (curve 1) and the second kind of loading (curve 2) (Problems 1 and 2, respectively) in 
the section y=o where M, has the maximum value for v ~'0.4, 1 = 1, b = 0.5; s = 0.01. 
Values of the flexural stresses uhi (at the point x=-a,y=O where they have the maximum 
values), ub2 (at the point x=i~=O where they are a maximum on the plate joining line) 
and the maximum planar stresses op (at the point z = 0, y = +0) are represented in the 
table for Y = 0.4,~~ = 0.01 and a number of values of b,l. The physical quantities are connected 
by the dimensionless relations 
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Agreement between the results of the solution of Problem 1 for large 2 (the values 5 and 
10 wave verified) and the results of solving the plane strain problem (when z+ =) in a fairly 
small neighbourhood of y is a confirmation of the validity of the proposed methodology and 
the numerical computations. Exact agreement within the limits of calculation accuracy is 
noted in the area ~~0.71. Let us add that the solutions of Problems 1 and 2 become identical 
as 1-O (the case of loading by a concentrated force). 

b 

I 1 

I 
5’ pro:;em ; -rYX,o:I LTbl i”“:;‘” i_op>.,,,5 

0.1 4.74 1.1" 778 4.17 1.07 787 
-- -- 

(I . 5 n.5 2.liO 1.01 665 2.05 1.01 885 
-- -~ 

1 1.73 0.798 473 l.IY 0.940 2330 

0.1 4.85 0 984 777 4.27 0.973 781; 
-- -- 

l 0.5 2.71 0.875 663 2.13 0.955 88:: 
-- -- 

1 1.83 O.G64 470 1.24 0.880 2330 

0.1 4.91 0.912 779 4.29 0.939 786 
-- 

2 0.5 2.78 0.801 6ti4 2.14 0.902 8% 
-- -- 

1 1.90 0. ,597 470 1.27 0.743 2330 

4. The solution constructed above for the problem of a box-like shell can be simplified 
assuming the parameter F to be small. We note that all the elastic quantities in the 
formulation (l.l)-(1.5) have the same order of smallness in the parameter e. And if we pass 
to the limit in (1.5) as E+O, we obtain w1 = uz c 0 and problem (l.ll-(1.5) splits into 
two sequentially solvable problems. 

Problem A is to seek the solution of the system of the first two equations (1.1) and 
(1.2) satisfying the boundary conditions (1.3) and the joining conditions 

V1 Ny T 0, q&C” z _qp. &f,(f) = _Jf_‘Z’ (4.1) 

Problem B is to seek the solution of the system of the last two equations (1.1) and (1.2) 
that satisfy the boundary conditions (1.4) and the joining conditions 

U1 = UT, Zry - (1) -~~ r$, or(l) = Pi(Z), o,(2) C V&l) (4.2) 

where the values of Vz@) and Vx(‘) are determined from the solution of Problem A. 
If the method described in Sect.2 is applied to solve these problems,thenProblem A will 

reduce to the investigationof thebending of a plate having a hinge support 

(&) 1 (IVY) = 0, U'+ = u'_ = 0 

while Problem B will reduce to an analysis of the plane state of stress of a plate weakened 
by a defect of the form 

(&) == (u) = 0, (%)+ = F (Pz)t 

The solution of Problems A and B yields an approximate solution of problem (l.l)-(1.5) 
and its equivalent problem (2.21-(2.4) apart from a component of the order of smallness 0 (e? 
as E+ 0. The value of this fact is that standard programs to compute the planar and bend- 
ing problems of plate theory can be efficiently used to solve problems on the analysis of 
laminar shells. The solution of Problems A and B is constructed here according to the scheme 
of Sect.2 by the integral transform method. Then after application of the transformations 
(2.5) these problems are reduced to the simplified (E = 0) system (2.12) whose solution has 
the form 

Then in the case of a load in the form of a concentrated force with components {Pz,, P,*, 

Pz*) applied at the point (5, q), the transforms of the bending ol* and planar stresses 
cz2 that occur in the plates can be written in the form 

fo- = 0, f3- = (C,,J1 H&,, f,’ = H, - C,,+ (Co,-)-’ H, 

f,’ = (C,,+)-l (H& - C,,+H& + (Co,-)-’ [I - ‘&+C,,-I H,) 
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ea*%** = eiaq (P,,R,+Q(s, E) + P,, (- ia).R,+Q (I, 5) + 
p,, (C,,J2 [C,,+C,s+b,, (J, 5) -I- (c,~+c,,- - 1) boll (J, 5) -I- 

4, (I, 5) - Co,+C,,+bm &5)1) 
Q (z, 5) = G, (I, E) - G, (z, 0) G, ((45) Gb CO; “1, 

bj, (z,E) = [H,-G-t (s, 511 [Tk+Ga k-9 81 

where the coefficients c,,* are defined in (2.12) and the operators R,*, Tj+, Hj* 
(2.10), where the operators are here applied to the second variable. In particular, 
case of Problem 1 the maximum bending stresses are 

(*~V)~hA[BchA+rhBSh(A+B))~(1-~)A(B+ehBShB+Arh~B)du 
Bch*A+ach'H-+ chAchBsh(A+B) 

(A = aa, R = ccb) 

Calculations showed that for e.<O,l in the case of Problems 1 and 2 the exact 
approximate solutions agree to within three significant figures. 
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